Concentration - of - measure inequalities Lecture notes by Gábor Lugosi
ثبت نشده
چکیده
This text contains some of the material presented at the Summer
منابع مشابه
Moment Inequalities for Functions of Independent Random Variables by Stéphane Boucheron,1 Olivier Bousquet,
A general method for obtaining moment inequalities for functions of independent random variables is presented. It is a generalization of the entropy method which has been used to derive concentration inequalities for such functions [Boucheron, Lugosi and Massart Ann. Probab. 31 (2003) 1583–1614], and is based on a generalized tensorization inequality due to Latała and Oleszkiewicz [Lecture Note...
متن کاملConcentration inequalities using the entropy method
We investigate a new methodology, worked out by Ledoux and Mas-sart, to prove concentration-of-measure inequalities. The method is based on certain modified logarithmic Sobolev inequalities. We provide some very simple and general ready-to-use inequalities. One of these inequalities may be considered as an exponential version of the Efron-Stein inequality. The main purpose of this paper is to p...
متن کاملOn concentration of self-bounding functions
We prove some new concentration inequalities for self-bounding functions using the entropy method. As an application, we recover Talagrand’s convex distance inequality. The new Bernstein-like inequalities for self-bounding functions are derived thanks to a careful analysis of the so-called Herbst argument. The latter involves comparison results between solutions of differential inequalities tha...
متن کاملA sharp concentration inequality with applications
We present a new general concentration-of-measure inequality and illustrate its power by applications in random combinatorics. The results nd direct applications in some problems of learning theory. The work of the second author was supported by DGES grant PB96-0300
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009